Localized surface plasmon enhanced quantum efficiency of InGaN/GaN quantum wells by Ag/SiO2 nanoparticles.
نویسندگان
چکیده
Optical properties of InGaN/GaN multi-quantum-well (MQW) structures with a nanolayer of Ag/SiO2 nanoparticle (NP) on top were studied. Modeling and optical absorption (OA) measurements prove that the NPs form localized surface plasmons (LSP) structure with a broad OA band peaked near 440-460 nm and the fringe electric field extending down to about 10 nm into the GaN layer. The presence of this NP LSP electrical field increases the photoluminescence (PL) intensity of the MQW structure by about 70% and markedly decreases the time-resolved PL (TRPL) relaxation time due to the strong coupling of MQW emission to the LSP mode.
منابع مشابه
Surface plasmon coupling dynamics in InGaN/GaN quantum-well structures and radiative efficiency improvement
Surface plasmonics from metal nanoparticles have been demonstrated as an effective way of improving the performance of low-efficiency light emitters. However, reducing the inherent losses of the metal nanoparticles remains a challenge. Here we study the enhancement properties by Ag nanoparticles for InGaN/GaN quantum-well structures. By using a thin SiN dielectric layer between Ag and GaN we ma...
متن کاملAg nanoparticles-embedded surface plasmonic InGaN-based solar cells via scattering and localized field enhancement.
Ag nanoparticles are embedded in intentionally etched micro-circle p-GaN holes by means of a thermal agglomeration process to enhance the light absorption efficiency in InGaN/GaN multi-quantum-well (MQW) solar cells. The Ag nanoparticles are theoretically and experimentally verified to generate the plasmon light scattering and the localized field enhancement near the MQW absorption layer. The e...
متن کاملSurface plasmon enhanced super bright InGaN light emitter
We use surface plasmons to increase the light emission efficiency from InGaN/GaN quantum wells by covering these with thin metallic films. Large luminescence enhancements were measured when silver or aluminum layers are deposited 10 nm above an InGaN light emitting layer, whereas no such enhancements are obtained from gold coated samples. The internal quantum efficiencies of quantum wells befor...
متن کاملAg-Decorated Localized Surface Plasmon-Enhanced Ultraviolet Electroluminescence from ZnO Quantum Dot-Based/GaN Heterojunction Diodes by Optimizing MgO Interlayer Thickness
We demonstrate the fabrication and characterization of localized surface plasmon (LSP)-enhanced n-ZnO quantum dot (QD)/MgO/p-GaN heterojunction light-emitting diodes (LEDs) by embedding Ag nanoparticles (Ag-NPs) into the ZnO/MgO interface. The maximum enhancement ration of the Ag-NP-decorated LEDs in electroluminescence (EL) is 4.3-fold by optimizing MgO electron-blocking layer thickness. The E...
متن کاملBloch surface plasmon enhanced blue emission from InGaN/GaN light-emitting diode structures with Al-coated GaN nanorods.
InGaN/GaN light-emitting diode structures with Al-coated GaN nanorods were fabricated by using soft ultraviolet nanoimprint lithography. The intensity of light emission was found to be greatly enhanced due to the strong near-fields confined at the interface of Al/GaN and extended to the multiple quantum wells (MQWs) active region. The dynamics of carrier recombination and plasmon-enhanced Raman...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Optics express
دوره 20 3 شماره
صفحات -
تاریخ انتشار 2012